SNAP PROCESS STEPS

²⁾24.5=16.5+8.0

DIMENSION TABLE FOR PROGRAMMING

		Α	В	С	D
		mm	mm	mm	mm
	SNAP2	1.0	3.0	5.0	3.0
	SNAP3	1.0	3.5	6.0	3.5
	SNAP4	1.0	4.0	7.0	4.0
	SNAP5	2.0	6.0	9.5	6.0
•	SNAP8	3.0	8.0	13.0	8.0
	SNAP12	5.5	10.5	15.5	10.5
	SNAP20	6.0	12.0	18.0	12.0

The cutting data listed are guide values! For materials that are difficult to machine or uneven bore edges, we recommend applying cutting speeds that are at the lower end of the range.

When using DR blades in the event of a malfunction, always evacuate the tool from the workpiece with the spindle rotating.

¹⁾ For cutting data for DF and DR blade geometry, see following page * coating for blades

M1 Austenitic stainless steel

Duplex stainless steel

Wrought aluminium alloys

Copper, brass and zinc base

S4 Titanium and titanium alloys

Iron-based heat-resistant alloys

Cobalt-based heat-resistant alloys

Nickel-based heat-resistant alloys

M3

K2

K3

N1

N2

Ν3

N4

S1

S2

S3

K1 Cast iron

M2 High-strength austenitic stainless steel

Ductile cast iron with up to medium strength

High-strength cast iron and bainitic cast iron

Aluminium alloys with low Si content

Aluminium alloys with high Si content

SNAP

APPLICATION AND PROGRAMMING EXAMPLE

ght:	16.5 mm
	Ø10.5 mm
	Ø11.5 mm
	P3 / steel C45
	both bore edges

Tool and blade selection

	SNAP8/10.5
	GH-Q-M-03726, forward and backward cutting
	Ø12.1 mm (note interfering edge)
ו:	68.0 mm (note interfering edge)

Cutting speed V₂: 30–50 m/min. Tool working feed: 0.1-0.2 mm/rev

SNAP

Tensile str. RM (MPa)*	Hardness (HB)	Hardn. (HRC)	SNAP 2/3/4/5 GS geometry			SNAP 8/12/20 GS geometry		
			VC	FZ	В*	VC	FZ	B *
<530	<125	-	40-60	0.02-0.1	А	40-60	0.1-0.3	Т
<530	<125	-	40-60	0.02-0.1	А	40-60	0.1-0.3	Т
>530	<220	<25	40-60	0.02-0.1	А	40-60	0.1-0.3	Т
600-850	<330	<35	30-50	0.02-0.1	А	30-50	0.1-0.2	Т
850-1400	340-450	35–48	30-50	0.02-0.1	А	30-50	0.1-0.2	А
600-900	<330	<35	20–40	0.02-0.05	A	20–40	0.05-0.15	A
900-1350	350-450	35–48	20–40	0.02-0.05	A	20–40	0.05-0.15	A
<600	130-200	-	10-20	0.02-0.05	А	10-20	0.05-0.15	А
600-800	150-230	<25	10-20	0.02-0.05	А	10-20	0.05-0.15	А
<800	135-275	<30	10-20	0.02-0.05	А	10-20	0.05-0.15	А
125-500	120-290	<32	50-90	0.02-0.1	А	50-90	0.1-0.3	Т
<600	130-260	<28	40-60	0.02-0.1	А	40-60	0.1-0.3	Т
>600	180-350	<43	40-60	0.02-0.1	А	40-60	0.1-0.3	Т
-	-	-	70–120	0.05-0.15	D	70–120	0.1-0.3	Т
-	-	-	70–120	0.05-0.15	D	70–120	0.1-0.3	Т
-	-	-	70–120	0.05-0.15	D	70–120	0.1-0.3	Т
-	-	-	30-70	0.02-0.05	D	30-70	0.05-0.15	Т
500-1200	160-260	25–48	8–15	0.02-0.05	А	8–15	0.02-0.1	А
1000–1450	250-450	25–48	8–15	0.02-0.05	А	8–15	0.02-0.1	А
600-1700	160-450	<48	8–15	0.02-0.05	А	8–15	0.02-0.1	А
900-1600	300-400	33–48	8–15	0.02-0.05	A	8–15	0.02-0.1	A

SNAP5-20 DF/DR CUTTING DATA

	Description	Tensile str.HardnessHardn.SNAP5-20 DFRM (MPa)*(HB)(HRC)DF geometry			SNAP5-20 DR DR geometry					
					vc	FZ	B*	vc	FZ	B *
P0	Low-carbon steel, long-chipping, C <0.25%	<530	<125	-	40-60	0.02-0.06	А	40-60	0.05-0.1	Α
P1	Low-carbon steel, short-chipping, C <0.25%	<530	<125	-	40-60	0.02-0.06	А	40-60	0.05-0.1	A
P2	Steel with carbon content C >0.25%	>530	<220	<25	40-60	0.02-0.06	А	40-60	0.05-0.1	А
P3	Alloy steel and tool steel, C >0.25%	600-850	<330	<35	30-50	0.02-0.06	А	30-50	0.05-0.1	А
P4	Alloy steel and tool steel, C >0.25%	850-1400	340-450	35–48	30-50	0.02-0.06	А	30-50	0.05-0.1	А
P5	Ferritic, martensitic and stainless PH steel	600-900	<330	<35	20-40	0.02-0.06	A	20-40	0.05-0.08	A
P6	High-strength ferritic, martensitic and PH stainless steel	900–1350	350–450	35–48	20-40	0.02-0.06	A	20-40	0.05–0.08	A
M1	Austenitic stainless steel	<600	130-200	-	10-20	0.02-0.06	А	10-20	0.05-0.08	Α
M2	High-strength austenitic stainless steel	600-800	150-230	<25	10-20	0.02-0.06	А	10-20	0.05-0.08	Α
М3	Duplex stainless steel	<800	135–275	<30	10-20	0.02-0.06	А	10-20	0.05-0.08	Α
K1	Cast iron	125-500	120-290	<32	50-90	0.02-0.06	А	50-90	0.05-0.1	Α
K2	Ductile cast iron with up to medium strength	<600	130-260	<28	40-60	0.02-0.06	А	40-60	0.05-0.1	А
K3	High-strength cast iron and bainitic cast iron	>600	180-350	<43	40-60	0.02-0.06	А	40-60	0.05-0.1	А
N1	Wrought aluminium alloys	-	-	-	70–120	0.02-0.08	D	70–120	0.05-0.2	D
N2	Aluminium alloys with low Si content	-	-	-	70–120	0.02-0.08	D	70–120	0.05-0.2	D
N3	Aluminium alloys with high Si content	-	-	-	70–120	0.02-0.08	D	70–120	0.05-0.2	D
N4	Copper, brass and zinc base	-	-	-	30-70	0.02-0.08	D	30-70	0.05-0.15	D
S1	Iron-based heat-resistant alloys	500-1200	160-260	25–48	8–15	0.02-0.05	А	8-15	0.02-0.06	Α
S2	Cobalt-based heat-resistant alloys	1000-1450	250-450	25–48	8-15	0.02-0.05	А	8-15	0.02-0.06	A
S3	Nickel-based heat-resistant alloys	600-1700	160-450	<48	8–15	0.02-0.05	А	8–15	0.02-0.06	A
S4	Titanium and titanium alloys	900-1600	300-400	33–48	8-15	0.02-0.05	А	8-15	0.02-0.06	A

SETTING THE BLADE FORCE

The blade force can be adjusted using the set screw. The blade force should be set so high that the blade extends completely after exiting the bore. This ensures that the blade can also provide the necessary cutting force. The tougher the material, the harder the spring should be set.

However, the blade force does not affect the chamfer diameter. An optimal spring tension increases the blade's service life and improves the quality of the chamfer.

A high blade force is required for extremely tough materials. The spring in SNAP5, 8 and 12 can be replaced for this purpose (see spare parts).

* coating for blades

The cutting data listed are guide values! For materials that are difficult to machine or slightly uneven bore edges, we recommend applying cutting speeds that are at the lower end of the range.

When using DR blades in the event of a malfunction, always evacuate the tool from the workpiece with the spindle rotating.

BLADE FORCE SETTING TABLE

Tool	Thread size	Standard setting		max. screw-in depth
	of set screw	Number of revolutions	mm	Number of revolutions
SNAP2/3/4	M3	4	6.0	12
SNAP5	M3	4	6.0	12
SNAP5 thread	M3	4	14.0	28
SNAP8	M5	4	11.0	13
SNAP12	M5	4	11.0	13
SNAP20	M5	4	11.0	13

How it works:

Clockwise rotation increases the spring load (tough steel, Inconel, titanium).

Anti-clockwise rotation reduces the spring load (aluminium).

Important!

The blade force does not define the chamfer diameter. This is essentially determined by the blade selected. Each blade produces a specific chamfer diameter.

