DATOS DE CORTE DEL SNAP18 MODULE

	Descripción	Resist. a la tracción	Dureza (HB)	Dureza (HRC)	Datos de corte ¹⁾		
		RM (MPa)			Vc	fz	B*
P0	Acero bajo en carbono, virutas largas, C <0,25 %	<530	<125	-	40-60	0.05-0.1	А
P1	Acero bajo en carbono, virutas cortas, C <0,25 %	<530	<125	-	40-60	0.05-0.1	Α
P2	Acero con contenido en carbono, C >0,25 %	>530	<220	<25	40-60	0.05-0.1	Α
P3	Acero aleado y acero para herramientas, C >0,25 %	600-850	<330	<35	30-50	0.05-0.1	Α
P4	Acero aleado y acero para herramientas, C >0,25 %	850-1400	340-450	35-48	30-50	0.05-0.1	Α
P5	Acero ferrítico, martensítico y PH inoxidable	600-900	<330	<35	20-40	0.05-0.08	А
P6	Acero inoxidable ferrítico, martensítico y PH de alta resistencia	900-1350	350-450	35–48	2040	0.05-0.08	А
M1	Acero inoxidable austenítico	<600	130-200	-	10-20	0.05-0.08	Α
M2	Acero inoxidable austenítico de alta resistencia	600-800	150-230	<25	10-20	0.05-0.08	А
МЗ	Acero inoxidable dúplex	<800	135-275	<30	10-20	0.05-0.08	Α
K1	Fundición gris	125-500	120-290	<32	50-90	0.05-0.1	Α
K2	Fundición dúctil hasta resistencia media	<600	130-260	<28	40-60	0.05-0.1	Α
К3	Fundición de alta resistencia y fundición bainítica	>600	180-350	<43	40-60	0.05-0.1	Α
N1	Aleaciones de aluminio forjado	_	_	-	70-120	0.05-0.2	D
N2	Aleaciones de aluminio con bajo contenido en Si	_	_	-	70-120	0.05-0.2	D
N3	Aleaciones de aluminio con alto contenido en Si	-	_	-	70-120	0.05-0.2	D
N4	Base de cobre, latón y zinc	-	_	-	30-70	0.05-0.15	D
S1	Aleaciones de hierro resistentes al calor	500-1200	160-260	25-48	8-15	0.02-0.06	Α
S2	Aleaciones de cobalto resistentes al calor	1000-1450	250-450	25-48	8-15	0.02-0.06	Α
S3	Aleaciones de níquel resistentes al calor	600-1700	160-450	<48	8-15	0.02-0.06	Α
S4	Titanio y aleaciones de titanio	900-1600	300-400	33-48	8-15	0.02-0.06	А

 $^{^{1)}}$ Se pueden conseguir valores de corte más altos instalando dos o más módulos.

Los valores de corte posibles para el taladrado suelen ser superiores a los del chaflanado. Con la instalación de al menos dos módulos SNAP18, el rendimiento de chaflanado puede incrementarse hasta tal punto que apenas sea necesario hacer concesiones en términos de velocidad de mecanizado.