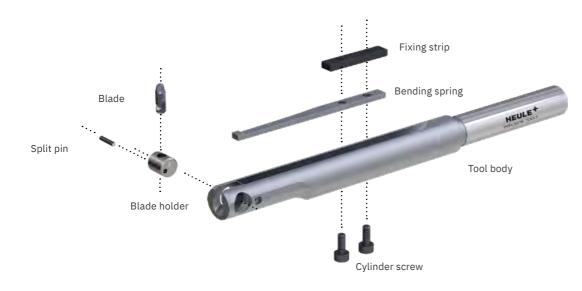

OPERATING PRINCIPLE

Tool function: COFA-X works the same way as the COFA tool system. The difference is the pre-tensioned spring and the relieved front of the tool body. The relief is necessary in order to move the blade, which can only move in one direction due to the pretension, eccentrically into the bore. Eccentricity, in turn, requires the capabilities of a CNC machine.

Blade function: The blades are designed either for forward or reverse machining only and are always pre-tensioned by the spring. The spring returns the blade to its neutral position. The blade position varies according to the machining direction.



Neutral position of blade for machining in reverse

Neutral position of blade for forward machining

TOOL DESIGN

COFA-X CUTTING DATA

	Description	Tensile strength	Hardness (HB)	Hardn. (HRC)	Spring	Cutting speed	Working feed
		RM (MPa)				(VC)	(FZ)
P0	Low-carbon steel, long-chipping, C <0.25%	<530	<125	-	S	20–30	0.05-0.15
P1	Low-carbon steel, short-chipping, C <0.25%	<530	<125	-	S	20–30	0.05-0.15
P2	Steel with carbon content C >0.25%	>530	<220	<25	S	20–30	0.05-0.15
P3	Alloy steel and tool steel, C >0.25%	600-850	<330	<35	S	20–30	0.05-0.15
P4	Alloy steel and tool steel, C >0.25%	850-1400	340-450	35–48	Z	10-20	0.05-0.1
P5	Ferritic, martensitic and stainless PH steel	600-900	<330	<35	Z	10-20	0.05-0.1
P6	High-strength ferritic, martensitic and PH stainless steel	900-1350	350-450	35–48	Z1	10-20	0.05-0.1
M1	Austenitic stainless steel	<600	130-200	-	Z1	20–30	0.05-0.15
M2	High-strength austenitic stainless steel	600-800	150-230	<25	Z1	10-20	0.05-0.1
M3	Duplex stainless steel	<800	135–275	<30	Z1	10-20	0.05-0.1
K1	Cast iron	125-500	120-290	<32	S	20–30	0.05-0.15
K2	Ductile cast iron with up to medium strength	<600	130-260	<28	S	20–30	0.05-0.15
K3	High-strength cast iron and bainitic cast iron	>600	180-350	<43	S	20–30	0.05-0.15
N1	Wrought aluminium alloys	-	-	-	н	20–40	0.1-0.2
N2	Aluminium alloys with low Si content	-	-	-	н	20–40	0.1-0.2
N3	Aluminium alloys with high Si content	-	-	-	н	20-40	0.1-0.2
N4	Copper, brass and zinc base	-	-	-	н	20-40	0.1-0.2
S1	Iron-based heat-resistant alloys	500-1200	160-260	25–48	Z1	10-20	0.05-0.1
S2	Cobalt-based heat-resistant alloys	1000-1450	250-450	25–48	Z1	10-20	0.05-0.1
S3	Nickel-based heat-resistant alloys	600-1700	160-450	<48	Z1	10-20	0.05-0.1
S4	Titanium and titanium alloys	900-1600	300-400	33–48	Z1	10-20	0.05-0.1

The cutting data listed are guidelines! They depend on the amount of the unevenness of the bore edges (e.g. high slope > low cutting value). For materials that are difficult to machine or uneven bore edges, we recommend applying cutting speeds that are at the lower end of the range.

Operating instructions

> Blade change> Spring change

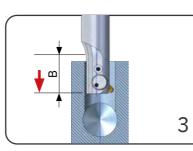
heule.com > Service > Media & Download Centre

COFA-X PROCESS STEPS

. 2 mm 1

COFA-X

 Spindle stop • Approach by rapidly traversing with offset 0 spindle orientation²⁾ (=M19).

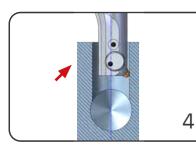

M5

G0 X0 Y0 M19

G0 Z+27.01

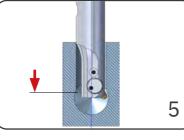
 Offset value A (value depends on the tool, see customer drawing)

• Rapid feed to max. B (value depends on the tool, see customer drawing)

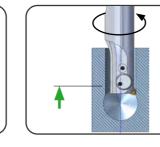

³⁾ 10.0=50.0/2-15.0(=B)

G0 Z+10.03

1) 27.0=50.0/2+2.0


²⁾ Spindle orientation: The position of the cutting edge must be aligned in advance so that it can be moved in the offset direction.

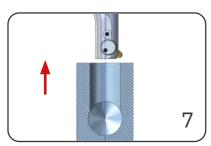
G0 Y+1.12


• Offset value 0 (centre of bore axis, bore edge is lightly touched)

G1 Y+0.0 Z+11.12

· Rapid feed to the starting position

G0 Z+0.0



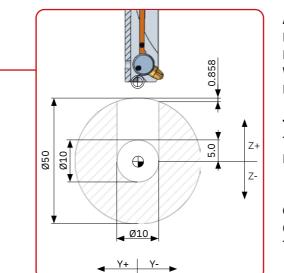
• Spindle rotation anti-clockwise

6

- External coolant on
- Working feed

S800 M4 M8 G1 Z+7.0³⁾ F80 ⁴⁾ 7.0=5.0+2.0

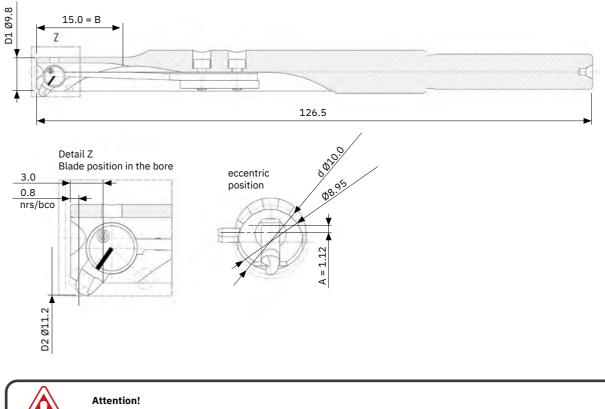
• Spindle stop! • Rapid feed out of the workpiece

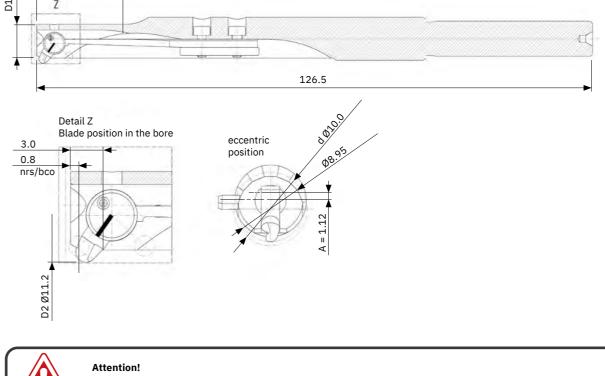

M5 G0 Z+27.0

Important:

COFA-X works in the anti-clockwise direction, meaning the spindle must be programmed to rotate anti-clockwise.

APPLICATION AND PROGRAMMING EXAMPLE




Application data Material: Bore Ø: Workpiece: Machining:

Tool and blade selection Tool: Blade:

Cutting data Cutting speed Tool working f

TOOL FOR APPLICATION EXAMPLE

Each COFA-X is application-specific, i.e. specifically designed for the individual deburring task. When programming, do not use the values from the programming/tool example above, but use the values from your own tool drawing.

St50-1 (P3)
Ø10.0 mm
Ø50.0 mm
rear bore edge only

COFA-X
backward cutting only
left-hand cutting

۱۷ _c :	20–30 m/min.			
feed:	0.05-0.15 mm/rev			